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Plug-and-Play Priors for Model Based

Reconstruction

Singanallur V. Venkatakrishnan, Charles A. Bouman, and Brevahlberg

Abstract

Model-based reconstruction is a powerful framework fowvisw a variety of inverse problems in
imaging. The method works by combining a forward model of ithaging system with a prior model
of the image itself, and the reconstruction is then compbtethinimizing a functional consisting of the
sum of two terms corresponding to the forward and prior msadel

In recent years, enormous progress has been made in theprobldenoising, a special case of an
inverse problem where the forward model is an identity ojgeréd wide range of methods including non-
local means, dictionary-based methods, 3D block matchivgminimization and kernel-based filtering
have proven that it is possible to recover high fidelity inm@wen after a great deal of noise has
been added. Similarly, great progress has been made in vingranodel-based inversion when the
forward model corresponds to complex physical measureniemtpplications such as X-ray CT, electron-
microscopy, MRI, and ultrasound, to name just a few. Howegembining state-of-the-art denoising
algorithms (i.e., prior models) with state-of-the-artémsion methods (i.e., forward models) has been a
challenge for many reasons.

In this report, we propose a flexible framework that allovegesif-the-art forward models of imaging
systems to be matched with state-of-the-art prior or démpisiodels. This framework, which we term as
Plug-and-Play priors, has the advantage that it drambtisahplifies software integration, and moreover,
it allows state-of-the-art denoising methods that have mawk formulation as an optimization problem
to be used. We demonstrate with some simple examples howarldigPlay priors can be used to mix
and match a wide variety of existing denoising models witloradgraphic forward model, thus greatly

expanding the range of possible problem solutions.

S. V. Venkatakrishnan and C. A. Bouman are with the School ettEical and Computer Engineering, Purdue University, 468Nvestern
Ave., West Lafayette, IN 47907-2035, USA. Tel: 765-494-B5bax: 765-494-3358, E-maifsvenkata,boumg@purdue.edu.
B. Wohlberg is with the Theoretical Division, Los Alamos Natal Lab, Los Alamos, NM, USA. E-mail: brendt@lanl.gov.



. INTRODUCTION

Model-based reconstruction is a powerful framework fovisg a variety of inverse problems in imag-
ing including denoising, deblurring, tomographic reconstion, and MRI reconstruction. The method
typically involves formulating a model for the noisy meamment system (i.e., a forward model) and a
model for the image to be reconstructed (i.e., a prior modeéde reconstruction is then computed by
minimizing a cost function that balances a fit to these two rsodeor example, a typical approach is
to compute the maximura posteriori (MAP) estimate as the minimum of the sum of the log likelihood
forward model and the log probability of the prior distritmut.

In recent years, there have been enormous advances in thesabf a particular inverse problem
generally referred to as image denoising [1], [2]. The prnoblef image denoising is to recover an
image that has been corrupted by noise, the most commonlgideyed noise model being additive
white Gaussian noise. Since image denoising is the simpésst of an inverse problem, the forward
model being the identity operator, research in this field setedprovide a fertile environment for the
creation of new prior models. Some denoising algorithms aset on an explicit regularized inversion
formulation using, for example, a MAP estimate; but in otbases, the denoising algorithms are directly
formulated as ad hoc non-linear estimates of the noiseieage. In fact, a number of very novel and
effective approaches have recently emerged for image siagoExamples of new methods include a wide
variety of patch based non-local means approaches [3]raleragions of bi-lateral filtering approaches
[1], patch-based dictionary learning methods such as K-S¥DHlock-matching with transform-based
denoising such as BM3D [5], and a variety of total-variatj@gh and Markov random field (MRF) based
approaches [6]. These new methods have demonstrated thgiassible to vastly improve on what was
previously believed to be possible.

In parallel with these efforts, researchers have been pramg ways to create forward models for a
wide array of imaging and sensing systems from medical srarjii] to microscopes [8]. Research in this
field has demonstrated that model-based inverse methodgeattygmprove the quality of reconstructed
images [9]. However, since this research primarily death Wie challenges of accurately modeling large
and complex forward models and solving the associated ggation problems, there has been much
less emphasis on the incorporation of state-of-the-adr priodels. Therefore, research in model-based
inversion has tended to lag behind from the perspective edramkd prior modeling; and moreover, has
not fully benefited from the recent progress in denoising wash

In fact, recent progress has been made in incorporatingnaddapriors into general inverse problems.



For example, patch based dictionary priors have been usiesidrse imaging problems such as tomogra-
phy [10], [11] and MRI [12]. Furthermore, while BM3D may nottoeally lend itself to formulation as a
prior, Danielyan et al. [13], [14] have adapted the BM3D [&hdising for the inverse problem of image
deblurring. However, this approach is not directly apflieato a general inverse problem. So, while
some significant advances have been made in the integratadvahced prior and forward models, they
tend to be highly customized to the problem and currentlyimple turn-key approach exists to match
denoising algorithms as priors for general inverse problem

In this report, we propose a flexible framework for using dsimg algorithms as priors for model-
based inversion. This framework, which we term Plug-and-Ptayrq has the advantage that it simplifies
software integration, and moreover, it allows state-ef#int denoising methods that are not explicitly
formulated as optimization problems to be used. For demgisigorithms based on well-behaved op-
timization criteria (e.g. - closed, proper and convex fiord [15]), it can be easily shown that the
Plug-and-Play framework is convergent to the MAP estimatehef freconstruction. In more general
cases, we empirically demonstrate that the method conveairistly to a good solution. We show with
some simple examples how Plug-and-Play priors can be usedktandimatch a wide variety of existing
denoising models with the type of complex forward model ibdlpically used in applications such as
tomographic reconstruction. Consequently, this new agagraan greatly expand the range of possible
models used in model-based inversion.

Our proposed Plug-and-Play framework is based on a directcapiph of the alternating directions
method of multipliers (ADMM) [15] that has recently becomapplar for the solution of a variety of MAP
estimation/regularized inverse problems [16]-[21]. Opplecation of ADMM works by first splitting the
state variable so as to decouple the prior and forward madeist of MAP estimation problem. The
application of the ADMM technique to the resulting congtead minimization problem then results in
two decoupled optimizations, one for the forward model ané for the prior model. We note that
this allows for a completely decoupled software implemgotawith one module corresponding to a
denoising algorithm only dependent on the prior, and a steoodule corresponding to a model-based
inversion withl, regularization only dependent on the forward model. Imgdty, this framework can
be used to solve a MAP reconstruction problem even when tpicéxcost function corresponding to
the prior model is not known. Moreover, we also demonstratpigcally that the method can be used
with denoising algorithms such as BM3D that are not expjidiormulated as optimization problems.

In order to demonstrate the approach, we apply a wide randeradising algorithms as Plug-and-Play

priors for a simple tomographic reconstruction problermgsihe well-known Shepp-Logan phantom.



The results indicate that methods such as K-SVD [4], BM3D [5], RL22], g-GGMRF [23], TV [2],
and discrete reconstruction (DR) [24] can all be easily i@dpas priors through direct use of software
implementations of the denoising algorithms. The implemmgéon of the Plug-and-Play priors is very
simple and robust, and the observed convergence speed ghiéng iterative algorithm is comparable
to the convergence speed of a tightly integrated prior maakelis traditionally done with model based
reconstruction.

The organization of the rest of this report is as follows. Int®ecll we introduce the cost function
corresponding to the MAP estimation for tomographic retmasion. In Section 11l we briefly discuss
the variable splitting and ADMM algorithm for solving the MPAestimation problem. In Section IV we
apply the algorithm on a phantom data set with different d#ng algorithms (priors) and in Section V

we draw our conclusions.

II. MAP COST FUNCTION FOR SOLVING INVERSE PROBLEMS

Let y be aM x 1 measurement vector from which we desire to estimate theawnkrr, a N x 1
vector. Letp(y|z) be the conditional probability density function (pdf) ofetimeasurementsg given z,

andp(z) be the pdf of the unknown, then the MAP estimateraf given by

Z <« argmin{—logp(y|z) — logp(x)}
& «+ argmin{l(y;x)+ s(z)} 1)
wherel(y;z) = —logp(y|z) and —logp(z) = s(z) + terms independent af. In the special case of

Wy;2) = 5 |ly — =13 + & log (2702) the MAP estimate corresponds to denoising designed to remov
additive white Gaussian noise of variangg For this special case, we defifif(y; 02) to be the operator
that denoises the signglwhen it has been corrupted by additive Gaussian noise cénvegio2. This

operator is then given by the solution to the following MAPtiopzation problem:

. 1
By 02) = angin { 57y~ ol + (o) | @

Sometimes it is useful to have an additional regularizatiarameter to control the relative effect of the
prior model on the reconstruction. To allow for this addiab control, we can rewrite the estimation

problem as

i argmin {I(y;0) + fs(a)} . (3)

where can be used to modulate the amount of regularization api¢ige inversion. Notice that when

B =1 the problem is exactly the MAP estimation problem (1).



[1l. VARIABLE SPLITTING AND ADMM
In order to separate the forward and prior terms in the MAR ftoxction, we first split the variable
into two new variables: and v, and reformulate equation (3) as the following constraioptimization
problem [16], [17].
(Z,0) <« argmin{l(y;x)+ Bs(v)}
subject tox = v . 4)

We then solve (4) by forming the augmented Lagrangian funciiod using the ADMM technique [15].

The augmented Lagrangian for this problem is given by
A
La(@,v,u) = U(y;2) + Bs(v) + Sl — v+ ul} (5)

where v is a scaled dual variable and is the penalty parameter. The ADMM algorithm consists of

repeatedly performing the following steps until convelEn

>

< argmin Ly(z,0,u)
x

S

<+ argmin Ly (&, v, u)
v

u — u+(T-—0).

Notice that in general does not effect the final result but controls the rate of cayeece of the ADMM
algorithm.

If £ =0—wuandv =z + u then each iteration of the algorithm can be written as

T argmin{l(y; x)—i—;\H:c—i\%} (6)
o argmin {55 - ol + 6s(0)} @
u < u+ (T —0). (8)

The first step only depends on the choice of forward model. Thenskestep only depends on the choice
of prior and can be interpreted as a denoising operation asgjuation (2).
In order to emphasize the modular structure of the ADMM uedate define the operatdi(y, z; \)

as

A
i) = argmin { (i) + e - 313} ©

This function returns the MAP estimate sfgiven the datay, using very simple quadratic regularization

to a value,z. We callF a simplified reconstruction operator. Notice tffais also the proximal mapping



[25] associated with the functio;}@l(y; x). Using our definition of the simplified reconstruction operato
F(y,Z; A) from (9), and our definition of the denoising operafi(y;c2) from (2), we may now

reformulate the ADMM iterations as the following three step

&« F(y, @\ (10)
b H(@;g) (11)
u 4 u+ (& —0). (12)

The overall algorithm is summarized in Fig. 1. Importantlyingsthis Plug-and-Play framework, the
minimization can now be written as two independent softwa@dules - one for implementing the
simplified reconstruction operatdf(y,z;A\) and the other for implementing the denoising algorithm
H(%; 02). Furthermore changing the prior model only involves chagdire implementation dfl(; o2).
Thus the Plug-and-Play priors framework can be used to mix antdhntifferent denoising algorithms
(priors) with the forward model of interest. Notice that timénimization corresponding to the simplified
reconstruction operator and the denoising operator neeblenexact. Instead, they can be replaced by the
approximate operatoi® andH that do not minimize the respective cost functions but mxdtdecrease
its value sufficiently. This is an important technique for speg up the implementation of the ADMM
[15] and making the algorithm useful in practical applioas.

We note that the variable splitting approach discussed hasebeen exploited to solve a variety of
inverse problems [16], [17], [21], [26]. However the maintimation of this research was to create better
algorithms for solving the optimization problems resugtinom regularized inversion. For example, this
variable splitting/ADMM approach has been used to morecéffely solve problems witti; norms, TV
norms, and positivity constraints that can create diffiesliin conventional gradient based optimization.
In distinction to this earlier research, our primary goatdsuse splitting strategies as a mechanism to
create a flexible framework to easily match prior models (edigmbin the form of denoising algorithms)
with forward models.

Finally we note that in this report we do not discuss theoaétionvergence properties of the Plug-and-
Play framework. While the ADMM is guaranteed to converge #nd s are convex, closed and proper
functions andL, has a saddle point [15], we observe via our numerical exmarisnthat substitutingl
with denoising algorithms that do not explicitly corresgoto a convex functions or even a strict
optimization problem, still produces a stable result. Thus rgly on empirical evidence from our

experiments to show that our framework produces a stabidtres



function [z] +- RECONSTRUCTy, 3, \)

% Inputs: Measurementg Regularization3, Augmented Lagrangian parameter

Initialize z
VT, u+0 /I Initialize v andu
02 g /I Variance for denoising algorithm

while Stopping criteria are not meio

T 0—u
T+ F(y,T; \) /I Only dependent on forward model
VT Fu
0 < H(9;02) /I Denoising operator only dependent on prior
u<—u+ (& —0) /I Update the scaled dual variable
end while

end function

Fig. 1. Pseudocode for Plug-and-Play priors framework. In eacftib®@ an alternating minimization is done. The first
minimization depends only on the likelihood function while the second minimizatiiy requires the application of a denoising

algorithm. Thus introducing a new prior only requires introducing a nemoiding software module.

IV. EXPERIMENTAL RESULTS

In this report we will restrict our simulations to the caseemi(y;z) = 1|y — Az} , Ais a
tomographic forward projector, antl is a diagonal weighting matrix. We will experiment with a iedy
of state-of-the-art denoising techniques firwhich may or may not explicitly be formulated as prior
models in a regularized optimization framework. We evauatir method on #4 x 64 Shepp-Logan
phantom with values scaled between- 255. The phantom is forward projected at 141 views between
—70° and +70° and noise is added to simulate Poisson statistics. This typerneard model is widely
used in electron tomography [8], [27] where, due to meclamionstraints, the sample can only be tilted in
a limited range. We compare reconstructions using the PhagPday priors framework by experimenting
with six different denoising techniques/priors - K-SVD [#M3D [5], PLOW [22], Total Variation (TV)
[28], g-GGMRF [23] and discrete reconstruction (DR) [24] eTiegularization parametgris adjusted for
achieving the minimum root mean square error (RMSE) betweeneitonstruction and phantom. Instead
of using the simplified reconstruction operafiériin the ADMM loop, we use an approximate operator

F, which lowers the value of the cost function correspondimd tusing N, number of iterations of



TABLE |
COMPARISON OF THE MINIMUM ROOT MEAN SQUARE ERROR OF THE RECONSTRUCTION WITH RESPECT TO THE ORIGINAL
PHANTOM FOR VARIOUS PRIORSWE OBSERVE THAT THE THE PATCH BASED NONLOCAL DENOISING OPERATIRS GIVE A

LOwW RMSERECONSTRUCTION

Algorithm RMSE | g
K-SVD [4] 2.32 | 4.32
BM3D [5] 2.51 | 1.39
PLOW [22] 2.70 | 1.50
TV [28] 3.42 | 047
0-GGMRF [23] 4.46 | 0.28
Discrete Recon [24] 1.32 1.00

iterative coordinate descent (ICD) [29] with random ordpdates [7]. The algorithm is initialized with
a filtered back projection reconstruction. The valueNgf., is set to 1 for all algorithms except the DR
prior in which case it is set t@0. The value of) is set to1/75 for all experiments except the DR prior,
in which case it is set td/20. Since the DR prior is non-convex we observed that the value effects
the final solution. The number of levels in the case of the disareconstruction prior is set ® - the
number present in the original phantom. Further details efghrameters used for different denoising
algorithms are given in Appendix A.

Fig. 2 shows the reconstructions resulting from the use ositheéenoising algorithms as prior models,
and Table. | shows the corresponding RMSE for each prior. lisnvery simple Shepp-Logan image, the
DR prior results in the lowest RMSE. However, the other methedsit in a comparable RMSE. Most
importantly, each denoising algorithm was easily matcloethé¢ tomographic forward model and for each
prior, the convergence to the fixed solution was stable andstotsee Fig. 3). Interestingly, the BM3D
algorithm is formulated without the explicit use of an optiation framework, so the Plug-and-Play
methodology provides a simple and robust framework to ipo@te it as a prior.

Finally we compare the convergence of the ADMM technique éodinect implementation of the MAP
estimate using a g-GGMRF prior model that is tightly intégdanto the cost function [23]. The traditional
approach of tight integration allows for more flexibility ihe design of optimization algorithms, so it
might be expected to have faster convergence; but thisrfesteergence is at the cost of a less modular

and flexible design. Nonetheless, one would expect that betRliug-and-Play and traditional formulation



(e) TV (f) g-GGMRF (g) Discrete reconstruction

Fig. 2. Comparison of the minimum RMSE reconstructions using diffepeiots for the Shepp-Logan phantom projected in
a limited angular range4{/ — 70°). All images are displayed in the windof® — 255]. (a) Phantom (b) K-SVD (c) BM3D
(d) PLOW (e) TV (f) g-GGMRF (g) Discrete reconstruction. We obsetivat the patch based denoising algorithms (b) - (d)
work well producing qualitatively comparable reconstructions to the tylgicsed priors like TV and g-GGMRF. Some of the
features in the phantom are not reconstructed accurately due to the limgkdreature of the projection data. The discrete prior

(g) produces a very accurate reconstruction for this phantom.
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Fig. 3. Comparison of the convergence (RMSE between the recotistrand the original phantom) as a function of iteration
number for the different denoising models used. We note that the g@nee for all algorithms is robust and stable. Furthermore

the convergence rates across the different denoising algorithmsnaltar.s

should yield the same result when run to convergence. Meredor this case, the denoising algorithm
corresponds to the minimization of a convex function, andckethe ADMM technique is known to be
globally convergent provided that the inner minimizatiare either exact or are run for a sufficiently
large number of iterations [15]. Fig. 4 shows the RMSE as a fanatf iteration number for the tightly
integrated approach where the ICD algorithm is used to shlwe¢omographic inversion compared to the
two step ADMM approach with a g-GGMRF denoising prior. We #et number of inner iterations in
the g-GGMRF denoising step in ADMM to 1 for a fair comparistinis possible that this will not lead
to a monotonically decreasing cost function because theriminimizations are not exact. However we
still observe that the RMSE decreases with iteration. WitieeADMM approach is slower than ICD for
our implementation and requires greater memory to storeathdiary variables [20], [21], it provides
a more flexible framework for incorporating different prioFurthermore several techniques have been
proposed to speed up the ADMM algorithm [15], [20] which canapplied to the Plug-and-Play priors

framework.

V. CONCLUSIONS

In this report, we proposed a flexible framework that allovedesbf-the-art forward models of imaging
systems to be matched with state-of-the-art prior or démgpimodels. The framework, which is based

on variable splitting and use of the ADMM algorithm, simplfithe software architecture by decoupling
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==ICD
— ADMM||

il ——

0 50 100 150
Iteration number

Fig. 4. Comparison of the convergence of ICD versus ADMM for th@@MRF prior withp =2,¢ = 1.2,¢ = 1/100,0, =
0.594. The convergence is measured by using the RMSE between the rectiostrand the original phantom. The number of
inner iterations in the ADMM is set to 1 for a fair comparison. We observe BB converges faster but ADMM’s speed is

comparable. However the time taken per iteration in ADMM will be higher duthnéotwo step minimization.

the forward and prior models. Furthermore the framework lesastate-of-the-art denoising algorithms,
even those that have no known formulation as an optimizaiioblem, to be used as priors/regularizers

for model based inversion.
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APPENDIXA

PARAMETERS FOR DENOISING ALGORITHMS

The parameters of the algorithms are adjusted for the miniRMSE tomographic reconstruction. In

this section we specify the parameters used for the diffatenoising routines.
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o K-SVD : We use the K-SVD denoising code from http://www.cs.techrao.il~ronrubin/software.
html. The following parameters were used for denoising:
— Size of patch 4 x 4
— Size of dictionary : 3600 patches

— Number of iterations: 10

For the 3 achieving minimum RMSE (see Table. I) we ggf = /5 = 18.
The other parameters are set to the default values in theaeftWhe K-SVD dictionary is initialized
with the default settings in the software. For each subsgtquéter iteration of ADMM, the K-SVD
dictionary is initialized with the final dictionary from thegvious iteration.
« BM3D : We use the BM3D code from http://www.cs.tutfioi/GCF-BM3D/index.htm{#ref\ _software.
— For the achieving minimum RMSE (see Table. I) we sgt= \/é = 10.192 as input to the
BM3D routine.
The other parameters are set to the default values in the aeftw
o PLOW : The code for PLOW was downloaded from http://users.soe edstpriyam/PLOW/. We
use the following parameters:
— Block size : 5
— For thes achieving minimum RMSE (see Table. I) we sgt = \/E = 10.607.
The other parameters are set to the default values in the aeftw
o g-GGMRF : The q-GGMRF denoising operator is given by
T+ arginin Q;%IIy — |3+ (1T£ Z wijw (13)
{i.jrex c
wherep, q, ¢, o, w;; are the g-GGMRF parameters: is the variance of the white noise in the
data, andy is the set of all neighboring pixels (8 point neighborhodid)e weights are set téj for
diagonal neighbors and t%) for horizontal and vertical neighbors. The parameters ofdioising
are settop = 2,9 = 1.2,¢=1/100, 0, = 0.29 which was found to produce a reasonable result for
images with white noise of variane€. The random order ICD with surrogate functions [7] is used
to implement the cost optimization.
— For theg in Table. | we setr,, = § = 4.583 as input to the denoising operator.

— Number of ICD iterations: 10

» Total Variation : The code for TV denoising was downloaded from http://wwweoeade.dauphine.fr
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/~peyre/matlab/image/content.html. It minimizes the caosiction :

=

— argmin{”?/-x”%—i— AT2VTV(g;)} (14)

=

. 1 c
< argmin {2 ly — =3 + TVTV(x)} (15)
T 20n 2

where \ry = 2ery 02 and TV(z) represents the total variation operator. We dix, to 1/10.02.
This value was found to produce a reasonable denoising reswdditive white Gaussian noise of

varianceo?.

— Therefore for thes in Table. | we setr,, = \/E = 5.937.

— Number of iterations of the optimization routine: 100

Discrete Reconstruction (DR) prior : A denoising operation corresponding to the discrete recon
struction prior (one that restricts the number of classdsés taken by the pixels in the reconstruction
to K) is given by
. 1 X
(1,b) « ) bgflg?li;}M 202 Z(yz‘ — u(bi))? + coiscrete Z w;;6(b; # bj) (16)
TR =1 {i.jtex

wherey is a M x 1 vector containing the noisy image? is the noise variance,is a M x 1 vector
of labels corresponding to each pixel,: {1,--- , K} — R is a function that maps each label to
a discrete output level (class mean)consists of all pairs of neighboring pixels;; weights the
interaction between neighboring pixeld s an indicator function, andpiscrete IS @ constant. The
denoising operation above is a non-convex optimizatiolera and we will describe an algorithm
to find a local minimum. To minimize the cost function in (16) wee an alternating minimization

strategy. The algorithm consists of repeatedly performigfollowing steps for each pixel

— Class label update

~ . 1
b; <+ argmin

ke{l,— K} ﬁ(yi — a(b:))* + CDiSCfeteZ wi;d (bj # k) (17)
e{1,, n

JEXi
where; is the set of neighbors of pixel
— Mapping function update
Taking derivative of the cost function in (16) with respeatdachu(k) Vk € 1,--- , K and

setting it to zero gives

1 &
(k) Nk;yié(bi:k) (18)
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M
where N, = 2(5@ = k). Notice that this step simply sets the mapping for a gives<ta

=1
the mean value of the pixels assigned to that class.

Thus the denoising operator corresponding to the discretnstruction prior is given by
H(y; 07) = -

wherep; = [fu(b1), -+, fu(bar)]".

In practice we set the number of iterations 10 as we found this to produce good results for
the denoising problem. We fixpiscrete t0 4 as this produced a good denoising result for additive
white Gaussian noise of varianed. The weights are set téz— for diagonal neighbors and t%)for
horizontal and vertical neighbors. In order to initialize tclass labels we use Otsu’s method [30]

on a low pass filtered version of the noisy input
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